Assistant Professor
Forest Sciences Centre 4024
2424, Main Mall
Vancouver, BC V6T 1Z4
work phone: 6048270639

My area of interest is wood machining and process optimization in both the primary and secondary wood manufacturing sectors. My overall research objective is to provide sound scientific results using both fundamental and applied research that can be easily translated to the wood industry to increase wood recovery and product quality which directly impacts revenues and local economies.

Therefore, I am motivated by research that focuses on the wood-tool interaction which is critical in understanding how to improve surface quality and product durability, reduce waste, and eliminate unnecessary manufacturing operations. I use an approach that combines modelling and laboratory tests  to determine how cutting parameters of different machining processes affect specific performance indicators.

I also believe that it is important to better link forest management and silvicultural practices to end-user needs in order to improve raw material allocations, focus on market-pull operations and foster product innovations and development based on specific wood properties and the corresponding wood processing techniques. As the pressure on forest lands constantly increase, I feel this area of research could benefit both large-scale industries and small rural communities.

Research Areas

Production efficiency
Wood machining
Process optimization
Surface characterization
Modelization of wood cutting processes


Modelling wood fracture mechanics in primary wood products manufacturing
June, 2015June, 2020

(NSERC Discovery) Primary breakdown of logs having a diameter ranging from 2.5 to 30 inches is often done using a chipper-canter that produces, in a single operation, a cant and chips while minimizing sawdust production. However, the cutting action is quite complex since cutting direction changes along the tool path. As cutting direction depends on cutterhead and log diameters, process optimization has been done empirically for chip and cant surface quality. Therefore, no data is available on the cutting forces and/or the fracture mechanics that govern the wood-tool interaction in chipper-canters. This lack in knowledge could be overcome by using finite element modelling. However, research on finite element modelling of wood machining processes has been focused on orthogonal cutting. These models, based on metal cutting theories, have yielded good correlations but do not take into account fracture mechanics at the cellular level. A hybrid cellular/macroscopic finite element model has been developed to study failure mechanism in orthogonal cutting across the grain. The authors were able to demonstrate the need for both macroscopic and microscopic modelling. My research program focuses on acquiring experimental data that will be used to develop a hybrid finite element model of wood peripheral cutting process. The approach consists in acquiring thorough experimental data on cutting forces, fracture mechanics, chip formation and quality, as well as surface quality. This will give quantitative and qualitative information on cutting dynamics involved in different cutting direction. These findings will be correlated with cutting force, chip quality, and surface quality measurements made in the industry. Second, a hybrid cellular/macroscopic peripheral cutting finite element model will be developed for different cutting direction. This should enhance our knowledge of the cutting dynamics involved in peripheral cutting. Finally, the experimental and industrial data will be used to validate the model. In the long-term, this model will be further adapted to the particular machining operations of chipper-canters so change in cutting direction along the cutting path will be introduced as a function of cutterhead and log diameters. The model will then be used to study the impact of different cutting parameters on cutting dynamics, chip formation, and surface quality of chipper-canters.

Current Courses

Winter 2017

WOOD494 Principles of Wood Cutting and Tooling Sections

Wood cutting fundamentals, chip formation, cutting conditions, cutting edge maintenance, sawing, planing and molding, veneer cutting, chipping, turning.

Winter 2017

WOOD335 Quality Improvement Sections

Modern techniques for improving quality in the workplace with particular emphasis on the forest products industry. Topics include quality control management, control charting, continuous improvement and analysis of variance techniques.

Winter 2017

WOOD384 Wood Sawmilling and Drying Sections

Introduction to primary log breakdown systems and lumber material flow in modern sawmills and planermills. Lumber drying equipment and methods.

Selected Publications

Fredriksson M, Cool J, Duchesne I, Belley D (2017). Knot detection in computed tomography images of partially dried jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) logs from a Nelder type plantation Canadian Journal of Forest Research
Cool J, Hernández RE (2016). Impact of three alternative surfacing processes on weathering performance of an exterior water-based coating Wood and Fiber Science
Porth I, Bull GQ, Cool J, Gelinas N, Griess VC (2016). An economic assessment of genomics research and development initiative projects in forestry CAB Reviews (CABI, Wallingford, UK): Perspectives in agriculture, veterinary science, nutrition and natural resources. 11(16):1-10
Griess VC, Panwar R, Cool J (2015). The potential of mixing timber assets to financially offset negative effects of deer browsing on western redcedar The Forestry Chronicle
Kuljich S, Cool J, Hernández RE (2013). Evaluation of two surfacing methods on black spruce wood in relation to gluing performance Journal of Wood Science
Cool J, Hernández RE (2012). Effects of peripheral planing on surface characteristiccs and adhesion of a waterborne acrylic coating to black spruce wood Forest Products Journal
Cool J, Hernández RE (2011). Evaluation of four surfacing methods on black spruce wood in relation to poly (vinyl acetate) gluing performance Wood and Fiber Science
Cool J, Hernández RE (2011). Improving the sanding process of black spruce wood for surface quality and water-based coating adhesion Forest Products Journal
Cool J, Hernández RE (2011). Performance of three alternative surfacing processes on black spruce wood and their effects on water-based coating adhesion Wood and Fiber Science
de Moura LF, Cool J, Hernández RE (2010). Anatomical evaluation of wood surfaces produced by oblique cutting and face milling IAWA
Hernández RE, Cool J (2008). Effects of cutting parameters on surface quality of paper birch wood machined across the grain with two planing techniques Holz als Roh- und Werkstoff
Hernández RE, Cool, J (2008). Evaluation of three surfacing methods on paper birch wood in relation to water- and solvent-borne coating performance Wood and Fiber Science